3.3.18 \(\int \frac {\cot ^2(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx\) [218]

3.3.18.1 Optimal result
3.3.18.2 Mathematica [A] (verified)
3.3.18.3 Rubi [A] (warning: unable to verify)
3.3.18.4 Maple [A] (verified)
3.3.18.5 Fricas [C] (verification not implemented)
3.3.18.6 Sympy [F]
3.3.18.7 Maxima [A] (verification not implemented)
3.3.18.8 Giac [F]
3.3.18.9 Mupad [B] (verification not implemented)

3.3.18.1 Optimal result

Integrand size = 21, antiderivative size = 192 \[ \int \frac {\cot ^2(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} d^{3/2} f}-\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} d^{3/2} f}-\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)-\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} d^{3/2} f}+\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} d^{3/2} f} \]

output
1/2*arctan(1-2^(1/2)*(d*cot(f*x+e))^(1/2)/d^(1/2))/d^(3/2)/f*2^(1/2)-1/2*a 
rctan(1+2^(1/2)*(d*cot(f*x+e))^(1/2)/d^(1/2))/d^(3/2)/f*2^(1/2)-1/4*ln(d^( 
1/2)+cot(f*x+e)*d^(1/2)-2^(1/2)*(d*cot(f*x+e))^(1/2))/d^(3/2)/f*2^(1/2)+1/ 
4*ln(d^(1/2)+cot(f*x+e)*d^(1/2)+2^(1/2)*(d*cot(f*x+e))^(1/2))/d^(3/2)/f*2^ 
(1/2)
 
3.3.18.2 Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.39 \[ \int \frac {\cot ^2(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\frac {\left (-\arctan \left (\sqrt [4]{-\cot ^2(e+f x)}\right )+\text {arctanh}\left (\sqrt [4]{-\cot ^2(e+f x)}\right )\right ) \sqrt [4]{-\cot (e+f x)} \sqrt {d \cot (e+f x)}}{d^2 f \cot ^{\frac {3}{4}}(e+f x)} \]

input
Integrate[Cot[e + f*x]^2/(d*Cot[e + f*x])^(3/2),x]
 
output
((-ArcTan[(-Cot[e + f*x]^2)^(1/4)] + ArcTanh[(-Cot[e + f*x]^2)^(1/4)])*(-C 
ot[e + f*x])^(1/4)*Sqrt[d*Cot[e + f*x]])/(d^2*f*Cot[e + f*x]^(3/4))
 
3.3.18.3 Rubi [A] (warning: unable to verify)

Time = 0.41 (sec) , antiderivative size = 176, normalized size of antiderivative = 0.92, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {2030, 3042, 3957, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^2(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 2030

\(\displaystyle \frac {\int \sqrt {d \cot (e+f x)}dx}{d^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sqrt {-d \tan \left (e+f x+\frac {\pi }{2}\right )}dx}{d^2}\)

\(\Big \downarrow \) 3957

\(\displaystyle -\frac {\int \frac {\sqrt {d \cot (e+f x)}}{\cot ^2(e+f x) d^2+d^2}d(d \cot (e+f x))}{d f}\)

\(\Big \downarrow \) 266

\(\displaystyle -\frac {2 \int \frac {d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{d f}\)

\(\Big \downarrow \) 826

\(\displaystyle -\frac {2 \left (\frac {1}{2} \int \frac {d^2 \cot ^2(e+f x)+d}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}-\frac {1}{2} \int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}\right )}{d f}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {2 \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}+\frac {1}{2} \int \frac {1}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}\right )-\frac {1}{2} \int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}\right )}{d f}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {2 \left (\frac {1}{2} \left (\frac {\int \frac {1}{-d^2 \cot ^2(e+f x)-1}d\left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}-\frac {\int \frac {1}{-d^2 \cot ^2(e+f x)-1}d\left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}\right )-\frac {1}{2} \int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}\right )}{d f}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {2 \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )-\frac {1}{2} \int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}\right )}{d f}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {2 \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}+\frac {\int -\frac {\sqrt {2} \left (\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )\right )}{d f}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}-\frac {\int \frac {\sqrt {2} \left (\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )\right )}{d f}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}-\frac {\int \frac {\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {d}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )\right )}{d f}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {2 \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}\right )+\frac {1}{2} \left (\frac {\log \left (-\sqrt {2} d^{3/2} \cot (e+f x)+d^2 \cot ^2(e+f x)+d\right )}{2 \sqrt {2} \sqrt {d}}-\frac {\log \left (\sqrt {2} d^{3/2} \cot (e+f x)+d^2 \cot ^2(e+f x)+d\right )}{2 \sqrt {2} \sqrt {d}}\right )\right )}{d f}\)

input
Int[Cot[e + f*x]^2/(d*Cot[e + f*x])^(3/2),x]
 
output
(-2*((-(ArcTan[1 - Sqrt[2]*Sqrt[d]*Cot[e + f*x]]/(Sqrt[2]*Sqrt[d])) + ArcT 
an[1 + Sqrt[2]*Sqrt[d]*Cot[e + f*x]]/(Sqrt[2]*Sqrt[d]))/2 + (Log[d - Sqrt[ 
2]*d^(3/2)*Cot[e + f*x] + d^2*Cot[e + f*x]^2]/(2*Sqrt[2]*Sqrt[d]) - Log[d 
+ Sqrt[2]*d^(3/2)*Cot[e + f*x] + d^2*Cot[e + f*x]^2]/(2*Sqrt[2]*Sqrt[d]))/ 
2))/(d*f)
 

3.3.18.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 
3.3.18.4 Maple [A] (verified)

Time = 0.18 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.72

method result size
derivativedivides \(-\frac {\sqrt {2}\, \left (\ln \left (\frac {\cot \left (f x +e \right ) d -\left (d^{2}\right )^{\frac {1}{4}} \sqrt {\cot \left (f x +e \right ) d}\, \sqrt {2}+\sqrt {d^{2}}}{\cot \left (f x +e \right ) d +\left (d^{2}\right )^{\frac {1}{4}} \sqrt {\cot \left (f x +e \right ) d}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {\cot \left (f x +e \right ) d}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {\cot \left (f x +e \right ) d}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 f d \left (d^{2}\right )^{\frac {1}{4}}}\) \(138\)
default \(-\frac {\sqrt {2}\, \left (\ln \left (\frac {\cot \left (f x +e \right ) d -\left (d^{2}\right )^{\frac {1}{4}} \sqrt {\cot \left (f x +e \right ) d}\, \sqrt {2}+\sqrt {d^{2}}}{\cot \left (f x +e \right ) d +\left (d^{2}\right )^{\frac {1}{4}} \sqrt {\cot \left (f x +e \right ) d}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {\cot \left (f x +e \right ) d}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {\cot \left (f x +e \right ) d}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 f d \left (d^{2}\right )^{\frac {1}{4}}}\) \(138\)

input
int(cot(f*x+e)^2/(cot(f*x+e)*d)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/4/f/d/(d^2)^(1/4)*2^(1/2)*(ln((cot(f*x+e)*d-(d^2)^(1/4)*(cot(f*x+e)*d)^ 
(1/2)*2^(1/2)+(d^2)^(1/2))/(cot(f*x+e)*d+(d^2)^(1/4)*(cot(f*x+e)*d)^(1/2)* 
2^(1/2)+(d^2)^(1/2)))+2*arctan(2^(1/2)/(d^2)^(1/4)*(cot(f*x+e)*d)^(1/2)+1) 
-2*arctan(-2^(1/2)/(d^2)^(1/4)*(cot(f*x+e)*d)^(1/2)+1))
 
3.3.18.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.24 (sec) , antiderivative size = 236, normalized size of antiderivative = 1.23 \[ \int \frac {\cot ^2(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=-\frac {1}{2} \, \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} \log \left (d^{5} f^{3} \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {3}{4}} + \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}}\right ) + \frac {1}{2} i \, \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} \log \left (i \, d^{5} f^{3} \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {3}{4}} + \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}}\right ) - \frac {1}{2} i \, \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} \log \left (-i \, d^{5} f^{3} \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {3}{4}} + \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}}\right ) + \frac {1}{2} \, \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} \log \left (-d^{5} f^{3} \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {3}{4}} + \sqrt {\frac {d \cos \left (2 \, f x + 2 \, e\right ) + d}{\sin \left (2 \, f x + 2 \, e\right )}}\right ) \]

input
integrate(cot(f*x+e)^2/(d*cot(f*x+e))^(3/2),x, algorithm="fricas")
 
output
-1/2*(-1/(d^6*f^4))^(1/4)*log(d^5*f^3*(-1/(d^6*f^4))^(3/4) + sqrt((d*cos(2 
*f*x + 2*e) + d)/sin(2*f*x + 2*e))) + 1/2*I*(-1/(d^6*f^4))^(1/4)*log(I*d^5 
*f^3*(-1/(d^6*f^4))^(3/4) + sqrt((d*cos(2*f*x + 2*e) + d)/sin(2*f*x + 2*e) 
)) - 1/2*I*(-1/(d^6*f^4))^(1/4)*log(-I*d^5*f^3*(-1/(d^6*f^4))^(3/4) + sqrt 
((d*cos(2*f*x + 2*e) + d)/sin(2*f*x + 2*e))) + 1/2*(-1/(d^6*f^4))^(1/4)*lo 
g(-d^5*f^3*(-1/(d^6*f^4))^(3/4) + sqrt((d*cos(2*f*x + 2*e) + d)/sin(2*f*x 
+ 2*e)))
 
3.3.18.6 Sympy [F]

\[ \int \frac {\cot ^2(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\int \frac {\cot ^{2}{\left (e + f x \right )}}{\left (d \cot {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(cot(f*x+e)**2/(d*cot(f*x+e))**(3/2),x)
 
output
Integral(cot(e + f*x)**2/(d*cot(e + f*x))**(3/2), x)
 
3.3.18.7 Maxima [A] (verification not implemented)

Time = 0.45 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.87 \[ \int \frac {\cot ^2(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=-\frac {\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} - \frac {\sqrt {2} \log \left (\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right )}{\sqrt {d}} + \frac {\sqrt {2} \log \left (-\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right )}{\sqrt {d}}}{4 \, d f} \]

input
integrate(cot(f*x+e)^2/(d*cot(f*x+e))^(3/2),x, algorithm="maxima")
 
output
-1/4*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d/tan(f*x + e 
)))/sqrt(d))/sqrt(d) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(d) - 2* 
sqrt(d/tan(f*x + e)))/sqrt(d))/sqrt(d) - sqrt(2)*log(sqrt(2)*sqrt(d)*sqrt( 
d/tan(f*x + e)) + d + d/tan(f*x + e))/sqrt(d) + sqrt(2)*log(-sqrt(2)*sqrt( 
d)*sqrt(d/tan(f*x + e)) + d + d/tan(f*x + e))/sqrt(d))/(d*f)
 
3.3.18.8 Giac [F]

\[ \int \frac {\cot ^2(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\int { \frac {\cot \left (f x + e\right )^{2}}{\left (d \cot \left (f x + e\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(cot(f*x+e)^2/(d*cot(f*x+e))^(3/2),x, algorithm="giac")
 
output
integrate(cot(f*x + e)^2/(d*cot(f*x + e))^(3/2), x)
 
3.3.18.9 Mupad [B] (verification not implemented)

Time = 2.75 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.30 \[ \int \frac {\cot ^2(e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\frac {{\left (-1\right )}^{1/4}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {cot}\left (e+f\,x\right )}}{\sqrt {d}}\right )}{d^{3/2}\,f}-\frac {{\left (-1\right )}^{1/4}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {cot}\left (e+f\,x\right )}}{\sqrt {d}}\right )}{d^{3/2}\,f} \]

input
int(cot(e + f*x)^2/(d*cot(e + f*x))^(3/2),x)
 
output
((-1)^(1/4)*atanh(((-1)^(1/4)*(d*cot(e + f*x))^(1/2))/d^(1/2)))/(d^(3/2)*f 
) - ((-1)^(1/4)*atan(((-1)^(1/4)*(d*cot(e + f*x))^(1/2))/d^(1/2)))/(d^(3/2 
)*f)